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The nonunitary model operator approach, which has been previously described, 
is applied to the 160 nucleus. Approximate expressions are given for the 
ground-state energy of this nucleus, by using both variational methods with the 
separation condition, developed in our previous work. Simple hard- and soft- 
core potentials are employed in the computations and the results obtained with 
the two methods are discussed. 

1. I N T R O D U C T I O N  

A nonunitary model operator approach to- two-body correlations in 
finite nuclei has been described in Massen and Grypeos (1975, 1980). Two 
approximate expressions for the ground-state energy of closed-shell nuclei 
have been derived in a general form, and detailed investigations have been 
performed for the simplest case, namely, that of the 4He nucleus. The 
approximate expression for ( E )  in the two methods for this nucleus were 
given in terms of the matrix elements of the effective interaction M~t s and 
the normalization integrals N~z s. 

The object of the present paper  is to give the corresponding approxi- 
mate  expressions for the energy of the 160 nucleus and to report the results 
of the computations based on them. The calculations in the case of 160 are 
more complicated than in the case of 4He, because there are now addi- 
tional states in the expression for the energy besides the states ( n l S ) =  
(00S) and the Euler -Lagrange  equations of the states (n lS )=(OOS)  and 
(10S) are coupled. These calculations are exhibited in Sections 2 and 3. In 
Section 4, the numerical values of the energy of this nucleus are given for 
various values of the oscillator parameter  b l=(h /Mo~)  l/a, using both 
approximate expressions. In performing our computations the potentials of 
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Kallio and Kolltveit (1964) (KK), Moszkowski and Scott (1960) (MS), 
Ohmura, Morita and Yamada (1956) (OMY), S1 (Afnan and Tang, 1968), 
and Harada, Tamagaki, and Tanaka (1966) (HTT) have been used. Fi- 
nally, some details on the calculations of the two-body part of the energy 
expectation value: (AE): for ~60 are given in the appendix. 

2. THE EXPRESSION FOR THE GROUND-STATE ENERGY 
OF 160 IN THE FIRST METHOD 

The general approximate expression for the ground-state energy ( E )  
of the closed shells nuclei which was found with the nonunitary model 
operator approach and with the first method has been given in Massen and 
Grypeos (1975). This is the following: 

<E> = <To> + (AE)2 + �9 �9 �9 (2.1) 

where (To> is the expectation value of the kinetic energy operator of the 
ground state in the independent-particle model, which is chosen to be the 
oscillator shell model, and (AE)2 is given by 

(AE)2 

[ O" f.,n-1)lS(~dSl~n-l,l$)]] C~n,n+ 1)lS(t~m'slr l,lS> + Ci" X.l [ C3sM.Is + ' =Z 
i~.j 

(2.2) 

The expressions of the coefficients C2js, C[{,.+_l)l s and the matrix element 
Mnl s have been given in Massen and Grypeos (1975) [formulas (14), (25)]. 
The variation of ( E )  with respect to the correlated relative trial wave 
function ~b~l s by using also the separation condition has led to the Euler 
equation 

[ h2 l ( l+1) E,u _ ] h2 d2C' s + V s( r) - e, s 
M dr 2 M r 2 

s.+ as B,,- as ,, 
-- 2 ~n+l,IS 2 V.--l,tS ( c < r < d )  

(2.3) 

where the general expressions of the quantities B,• s and e,a s have been 
given in Massen and Grypeos (1975) [formulas (18), (19)]. 
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It is clear that the Euler equations for the correlated relative wave 
functions are generally coupled. This coupling, which does not exist in the 
case of the nucleus 4He, where the quantum number n is only zero, exists 
in the case of the nucleus 160, where n takes the values 0 and 1. 

In order to find the expression of ( E ) ,  in the case of the 160 nucleus 
the expression of (AE)z must be found. The expression of (T0> is well 
known: 

(To)= E (2n~+ li+ 3 )-~ nill "~ = 18ho~ (2.4) 

For convenience we separate the sum Ei<:[ ] in expression (2.2), into three 
sums 

(AE)2 = X [ ] = X [  ] + x [  ] + E [  ] (2.5) 
i < j  a fl y 

where we sum over pairs of nucleons with the following quantum numbers: 

(a) ni=O , li=O , nj=O, / j=0 
(/3) ni=0 , li=0, nj=O, /:=1 
(y) ni=O, li= 1, nj=O, lj= 1 

After a long calculation, some details of which are given in the Appendix, 
we arrive at the following expression for the term (AE)2: 

(AE)2 = AoooMooo + AoolMool + AoloMolo + AOl IMoll + A o2omo2o 

+ Ao21M021 4- A looMloo + A 101M101 -- (3)1/2hoj(a loo(tkoool~loO) 

+ A lO, <tPoo~laPlOl >) (2.6) 

The quantities Ants, which depend on the normalization integrals 
(q~ntsltI'nts) of the various relative states, are given in the Appendix. 

Using the expressions of (T0) and (AE)2, the approximate energy 
expression of leO, i f  we include the center-of-mass correction and the 
Coulomb energy (Dabrowski, 1958), takes the following form: 

(E)  - 18ht0- --34 hto + 83 e 2 
2(2r bl 1" E s [ A o o s e o o s + A o l s m o l s - [ ' a o 2 s J | / l o 2  S 

( S - 0  and 1) (2.7) 
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We may note that if the model operator is unitary (Brink and Grypeos, 
1967) (and therefore the correlated wave functions ~bnl s are orthonormal, 
the expression of ( E )  will become 

83 e 2 
<E)  = 17.25hw+ 2(2~)1/2 b, +21(M~176176 M~176176176176  

+ 7.5(Mo2 o + M021) + 1.5(M,0 o + M101) (2.8) 

This is indeed the expression for ( E )  in the case of the unitary model 
operator approach (Grypeos, 1969). 

In order to obtain the value of ( E )  the matrix elements M, ts, 
(~b0os[~blos), and the quantities A~I s have to be computed. The M,t s are 
computed from equation (25) of Massen and Grypeos (1975) and the 
quantities A,1 s from equations (A.9)-(A.13) of the Appendix, after solving 
the Euler equations for the various states. It must be noted that in the case 
of 160 the Euler equations for the states (nlS)=(OOS) and (n lS )=( IOS)  
are coupled while the states (n lS )=(OIS )  and ( n lS )= (0 2 S )  they are not 
coupled. The expressions for the quantities e~ls, B,• for the various 
states could be found from the general formulas (19) and (18) of Massen 
and Grypeos (1975), following a procedure similar to that for the expres- 
sion for (AE)2. Such a procedure is, however, laborious and the expressions 
for these quantities were therefore obtained by applying the variational 
principle directly to the expression (2.7) for the energy of 160. In this way 
we arrived at the following expressions: 

(3~1/2.  Alos 
Qoos Bo + l,os 2 } A oos eoos Aoo s 

Qlos 
= ~ B I +  1,os ~ 0  , el~ h los 

Qols 
eol s = Aols ' 

Qo2s 
e02 s ~ A o 2 s  ' 

B o +  1, i s  ~ B 0 _  i, lS = 0  

Bo+ 1,28 = Bo- 1,2S ~'~ 0 

Bo- 1,0s = 0 (2.9) 

/ 3 ~1/2 ) 
(2.10) 
(2.il) 

(2.12) 

The expressions of the numerators Q, as are given in the Appendix. 
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3. THE EXPRESSION OF THE GROUND-STATE ENERGY 
OF trO IN THE SECOND METHOD 

The energy expression that was found with the second method of the 
nonunitary model operator approach of Massen and Grypeos (1975) is as 
follows: 

where 

and 

( E ) = E o + ( A E ) 2 + -  �9 �9 (3.1) 

E o = 2 ( T  0) (3.2) 

A 

=2; 
i<j 

X.,sE ] 
# 

i < :  X,.sC~s(q',esl'~s) 
(3.3) 

t.I The expressions of the coefficients C~n,n + Ors are similar to those of the 
first method (Massen and Grypeos, 1975). They differ only in that instead 
of the matrix element ( N L  I [R IN u 1, L )  which appears in the coefficients 
C(n,iJ n +__ l ) l S  there now appears the matrix element 

-~'~ _ I < N L I f R I N ~ I , L >  (NLi-~_I IN+ I,L)= A_ 1 

The coefficients G~s are similar to C2~ s. They contain also the factor 
E N L / 2 ( A -  1). The matrix elements /hr,~ s have been given in Massen and 
Grypeos (1975). 

The Euler equation for the ~ts  in this method is 

h 2 d2C/,as 

M dr 2 
h l( l+1)  A - 2  h 2 r 2 ] 

- -  + M r 2 t- A---~ M b y* + Vts(r)- Ent-  ents ~,as 

~ J B n - - I I S  
- -  Bn+l'lSl~n+l'lS2 --~" ~n-l, ls ( c < r < d )  

(3.4) 
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where b = (2h/M~o) 1/2 is the harmonic-oscillator parameter for the relative 
motion. 

The expression for (A/~)2 in the case of 160 nucleus is found as 
follows. 

The first sum of expression (3.3), which we call (AJ~)2a, is similar to 
(AE)2 of the first method. The expression for (AE)2 ~ can be found from 
the known expression for (AE)2 [expression (2.6)], if instead of Mnt s and 
( 3)1/2]i gnls and  ~5(3)1/2hr The expression that is found is the ~/ .,~o we put 
following: 

(~J~)2a ----- A oooMooo "Jr" A OOl.~Joo ' + AoloMo, 0 + Aol iMol 1 + a 020_,~f020 

~ ~ " 1 3 1 / / 2  +Ao2,Mo21 +AlOOeloo+AlolMiol- ~.~-(~) ~t.o(A ioo<~oool~lOO> 

+ A ,01(~b0O1161o~ >) (3.5) 

The second sum of (3.3), which we call (AE)2 b is found by following 
the same procedure as in the case of (AE)2 of the first method. This is 

(A j~)2 b -~ I [(AoooNooo + A oolNo01 ) 7~0 J + (AoIoNol 0 + Ao I INo, i) 5j~o 

+ (ao~oUo~o + A o~,Uo~,){h,o + (~ ,ooU,oo + A ,o,U,o,)-~h~ ] - 2 h ~ 0  

(3.6) 

where Nnt s = (tpntsl~bnlS >. 
Finally, by using equations (3.2), (3.5), (3.6) as well as the expression 

for the correction of the center-of-mass motion and that of the Coulomb 
energy, the energy expression for 160 in the second method becomes 

( E  > = 35, 25hw 4 
83 e 2 

2(2~) 1/2 b 1 

+ Aois(J~lois--5~o)Nois)dl-mo2s(J~o2s--3~(,om02s) 

+A,os(M,os_ff6h~ONlos)_ l 3) h~oAlos(~boos[~blOS> ] 
(S=O and I) (3.7) 
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The expressions for the quantities ~,ts, B, • 1,is for the various states are 

Qoos ~O+l,0S= 1 13 \1/2 AIOS Bo_l,0S~-0 (3.8) 
goOS=Aoos ' - - (~[ '~)  h~ 

801S 
0 0 1 S  ~ ~ 

= Aol----~, Bo+l, ls=Bo_l, ls--O (3.9) 

QoEs /~0+ 1,:s =/~0-1,2s --- 0 (3.10) eo2s = Ao2s, 

O,os 1 / 3 \  1/2 
/~,+,os=O, /~, ,os = -~[~-)  ho) (3.11) 

e l 0 S ~  A l o s '  " - ' - -  

The expressions of the numerators Q,,ts are of similar form to those 
in the previous case. They now contain the quantities (At0o s 

~O~oONoos), ( / ~ 0 1 S  - -  5 ~ r 1 7 6  ( M 0 2 s  - 3he~ (~'lms - 3hC~ in- 
stead of the matrix elements Moos, Mols, Mo:s, Mlos and the term 
~(~)1/2hr instead of (-32)1/2h60. 

4. RESULTS OF NUMERICAL CALCULATIONS 

The procedure in computing the ground-state energy of the 160 
nucleus is the following. 

For a given potential and harmonic-oscillator parameter b t = b/21/2, 
the Euler equations for the various states are solved numerically with 
arbitrary values of e,a s and Bo+ 1,os, and the corresponding values of M,t s 
and N,,ts are computed for various values of the separation distance, d. 

The appropriate value of d in each case is the "variational Moszkow- 
ski and Scott separation distance," d i s  at which the wave function has also 
continuous derivative. In the case when more than one dMs appear one 
may choose the smallest one. This choice might be physically interesting, 
since the short range of the correlations makes probable that the magni- 
tude of the neglected higher terms in ( E )  is sufficiently small. The usual 
criterion for the fulfilment of this requirement is the smallness of the value 
of the corresponding healing integral 

= fo~176 %,tl2dr (4.1) 71~ls 

The wave functions, which have been obtained in the manner, previ- 
ously described, are used to calculate new values for e~l s and Bo+ l,os from 
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the expressions (2.9)-(2.12) and the corresponding ones of the second 
method. This procedure is repeated until the values of each of the e and B 
remain unchanged. These quantities are therefore determined in the 
present approach self-consistently. 

As is noted in Section 2, the Euler equations for the correlated relative 
wave functions are generally coupled. These coupled equations were solved 
as follows. 

The corresponding homogeneous differential equations were solved 
and their solutions were taken as the corresponding nonhomogeneous 
parts of the equations. Once the nonhomogeneous parts of the equations 
were known, these were solved and their solutions were taken as the new 
nonhomogeneous parts, and so on. Self-consistency was achieved after 
three repetitions. 

In the computations we used for the nucleon-nucleon interaction the 
Serber-type potentials which were mentioned in the Introduction. The 
potentials KK, OMY, and MS are hard core, while the S1 and HTT are 
soft core potentials. The above potentials can be written in the form 

v(r) = �89 + l~)vtir ) + �89 -- P)vs(r ) (4.2) 

where /3 is the spin exchange operator and vt(r ) and v,(r) the nucleon- 
nucleon interaction in the triplet and singlet state, respectively. 

The form of vt(r ) and vs(r ) for the potentials KK, OMY, and MS is 
the following: 

for 0 < r  < c  
vt,s(r)= ~176 f o r c < r < o o  (4.3) 

The parameters V t, V s, A t, A s, and c are given in Table I. 
The vt(r ) and v,(r) for the potential S 1 have the form 

3 

vt,,(r ) = Y~ V/t,s exp( - a,t,sr 2) (4.4) 
i ~ l  

T A B L E  I. Parameters  of the Potentials K K ,  OMY, MS 

Potential c (fm) V t (MeV) V~ (MeV) h t ( f m -  1) A s (fro-  I) 
K K  0.4 475.0 330.8 2.5214 2.4021 

O M Y  0.4 475.044 235.414 2.5214 2.0344 
MS 0.4 260.0 260.0 2.083 2.083 
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while for the potential H T T  they are 

3 
z,,,,(r)= ~ V~,,sexp[-(rlait,,) 2] (4.5) 

i~l  

The parameters  of the potentials S1 and H T T  are given in Table II.  
The computed values of ( E )  for the leO nucleus, using the above 

potentials for some values of the harmonic-oscillator parameter  b~ and the 
first method, are given in Table  I I I  (see also Figure 1). The various 
contributions to the ground-state energy are also given in this table, in 
which Tcu  is the correction due to the center of mass mot ion and E c the 
Coulomb energy, estimated f rom the oscillator wave functions. 

The results of our computations for various values of b 1 show that for 
small values of this parameter  no acceptable dMs appear  for the state (100). 
These values of b I are noted by  an asterisk above the value of ( E )  in 
Table I I I  and by a dotted curve in Figure 1. It  is seen from Table I I I  and 
Figure 1 that there is no minimum in the saturation curves for all the 
potentials. In order to estimate the value of ( E )  we may use the value 
b 1 = 1.764 fm (or h~ = 13.33 MeV), which is determined f rom the analysis 
of the experiments of the elastic scattering of electrons by  160 (Elton, 
1961). For  this value of b I and for the potentials KK,  OMY, and S1 the 
values of ( E )  that are computed are close enough to the experimental 
value ( -  127.52) MeV. The computed values of ( E )  for the potentials MS 
and H T T  and for the same value of b I are more positive than the 
experimental value. 

The results of our computat ions for some values of b ! using the 
second method and the potentials KK,  OMY, and S1 are shown in Table 
IV and in Figure 2. The saturation curves for these potentials have minima 
corresponding to a negative energy. I t  should be  noted that for the other 
two potentials the energy is positive for all the computed values of b~. 

The minimum values of ( E )  for the potentials K K  and S1 correspond 
to bl~--l.6 fm (hto'-~16.194 MeV) while for the potential O M Y  they 
correspond to bl--~ 1.5 fm (hto--" 18.435 MeV). The corresponding values of 

TABLE II. Parameters of the Potentials SI, Hvr  

Potential state V 1 (MeV) V 2 (MeV) I/3 (MeV) a I a2 a3 

S1 triplet 1000 - 143.4 -43.0 5.4 fln -2 0.82 fm -2 0.60 fm -2 
SI singlet 880 - 67.1 -21.0 5.2 fm -2 0.62 fm -2 0.38 fm -2 

HTT tdplet 4000 -279.0 - 7.2 0.385 fm 0.942 fin 1.876 fm 
HTT singlet 4000 - 279.0 - 7.2 0.385 fln 0.942 fm 1.876 fm 
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Pig. 1. The saturation curves for 160 nucleus obtained with the potentials KK, OMY, MS, S1, 
and HTr and the first method. 

( E > ,  however, are too far f rom the experimental values of the ground- 
state energy. 

We may finally point out that the observed discrepancies should be 
mostly attributed to the omission of the higher terms in the cluster 
expansion and to the simplicity of the potentials. The fact that the 
omission of the higher terms should be responsible, in the first method, for 
the very negative values of <E> at small b 1 and for the lack of the 
min imum at the saturation curve is also indicated by the bigger values of 
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Fig. 2. The saturation curves for 160 nucleus obtained with the potentials KK, OMY, and S1 
and the second method. 

the healing integrals in this range of bl, compared to those for larger b 1. 
This behavior of the healing integrals is shown in Table V. In this table, we 
tabulate the values of %00, %ol, ~/100, ~lOl which were found for the potential 
K K  for some values of b 1 and using the first method. The behavior of the 
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TABLE IV. The Values of the Terms Contributing to (E)  for Various Values of b~ for the Potentials 
KK, OMY, S1, and the Second Method (Lengths in fro, Energies in MeV) 

KK OMY S1 

bj fi~o E 0 -  TCM E C (AE)2 <E> (AE)2 <E> (AE)2 (E)  
1.4 21.155 745.696 17.122 -770.988 -8.170 -802.410 -39.593 -768.092 -5.275 
1.5 18.435 649.844 15.984 -679.495 - 13.665 -705.721 -39.891 -678.093 - 12.263 
1.6 16.194 570.839 14.981 -599.643 -13.811 -622.483 -36.651 -599.461 -13.630 
1.7 14.350 505.852 14.102 -531.260 -11.306 -551.443 -31.489 -531.872 -11.918 
1.764 13.333 470.001 13.593 -492.566 -8.971 -511.386 -27.791 -493.547 -9.952 
1.8 12.794 450.999 13.316 -471.796 -7.482 -490.556 -26.242 -472.951 -8.637 
1.9 11.487 404.906 12.617 -420.760 -3.235 -437.255' - 19.730 -422.259 -4.734 
2.0 10.370 365.539 11.988 - 376.527 1.000 - 391.620 - 14.094 - 378.229 - 0.702 
2.5 6.633 233.813 9.588 -226.547 16.853 -237.176 6.224 -228.258 15.142 

heal ing integrals for the other potentials  are similar. As it is expected, this 

behavior  is similar in  the second method  too, bu t  the values of Tints are 
more  suppressed at the smaller values of b r 

We  may  further remark,  per ta in ing  to the second method,  that  

a l though the use of the single-particle ha rmonic  oscillator potent ia l  in  the 

expression of the H a m i l t o n i a n  has the desirable effect of the appearance  of 

the m i n i m u m  in the su tura t ion  curve, its effect on the energy value is, 
unl ike the s i tuat ion in  the case of 4He (Massen, 1976), to tower this value 
very considerably.  The corresponding calculat ion for 4He (in which non -  

coupled equat ions  appear)  with certain potentials  like the K K  and  S 1, give 

reasonable  estimates for ( E )  (about  - 3 3  MeV a nd  - 3 0 . 4  MeV, respec- 
tively) (Massen, 1976). The  difference in  the case of 160 should perhaps be 

traced to the dependence  of the terms con t r ibu t ing  to the energy on the 
mass n u m b e r  A. As long as A is small  (like 4He), it appears that  the use of 

TABLE V. The Values of the Healing Integral in the s States for 
Various Values of b I for the Potential KK and the First Method 

bl 17000 I]001 ~t00 17101 

1.4 0.0127 0.0113 0.0222 0.0173 
1.5 0.0103 0.0092 0.0167 0.0139 
1.6 0.0084 0.0075 0.0133 0.0114 
1.7 0.0070 0.0063 0.0109 0.0095 
1.764 0.0062 0.0056 0.0096 0.0085 
1.8 0.0058 0.0053 0.0090 0.0079 
1.9 0.0050 0.0045 0.0076 0.0067 
2.0 0.0042 0.0038 0.0065 0.0058 
2.5 0.0021 0.0020 0.0032 0.0029 
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the auxiliary harmonic oscillator potential in the Hamiltonian H increases 
the energy, particularly for the small values of the oscillator parameter, 
with the effect that the saturation curve has a minimum while the energy at 
the equilibrium value of b 1 does not suffered very strong increase. In the 
case of 160, the use of the auxiliary potential which led to the existence of 
the minimum in the saturation curve has also resulted in a very big 
increase of the energy at the equilibrium value of b r 

APPENDIX: DETAILS ON THE CALCULATION OF THE 
TERM (AE)2 

In Section 2 the term (AE)2 was separated into three sums [expression 
(2.5)]. 

In the first sum Y,~[ ], we sum over the same pairs with the sum 
y4</[ ] of the 4He nucleus. Therefore the Y~[ ] is equal to the term 
(AE)2 for 4He which has been given in Massen and Grypeos (1975). This is 

i2 2 ] [ 2  2 1 
~] [  ] =  ~ ' ~  Nooo+Nool M~176176 - - +  Morn 

a N0Ol N0oo + N0ol 

(A.1) 

In the second sum Y~t~[ ], we sum over the set of pairs, which are 
characterized by the quantum numbers n; =/,. =m~ = 0 and nj =0,/y-- 1,mj = 
0 _  1. The possible states of the relative motion and the motion of the 
center of mass can be found from the known relations 

2n~+l~+2nj+ly=2n+l+2N+L (A.2a) 

IZ,-61<x<zi+ 6, IZ-LI<X<Z+L (A.2b) 

( -- I) t'+ ~ = ( -- I) t+L (A.2c) 

mi + mj. = m + M--  # (A.2d) 

Using these relations we see that the states of the relative motion and 
the motion of the center of mass are 

O) n---O,l=O,m=O; N=O,L--1,M--O, _1;  (2~= 1,/z=0, +1) 
(ii) n = 0 , l -  1,m =0, __+ 1; N=O,L=O,M=O; ()~= 1,#=0,  _ 1) 
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Since the quantum numbers n and N are equal to zero, the coefficients 
0 C(~,n+_Ots, of the nondiagonal term of the sum Y,~[ ], are zero. Therefore 

this sum is written as follows: 

Y ors [ Cots MOlS ] 
E [ ] = ]P'ots[ C~sNots ] (B) 

(A.3) 

The numerator in this expression, taking into account the known 
expression of the coefficients C,~}s (Massen and Grypeos, 1975, 1980), can 
be written as follows: 

E ~j C~tsMoJs = E [ C~osMoos+ C~sMols] 
OIS S 

= E [ �89  M,o so+ (sM , + �89 ] 
s 

1V+s8 ]mr • ((00,01 : 1101,t30: 1)2(001mfl18)2[1+( - , ,,5]...oo s 

l + s  + (00,01 : ll00,01 : 152(001%11•)2[ 1 + ( - 1  ) 8,,,]Mo,s} 

(A.4) 
Using the known values of the Clebsch-Gordon coefficient and 

taking the values of the Brody-Moshinsky brackets from the Tables of the 
Transformation Brackets (Brody and Moshinsky, 1960), the expression 
(A.4) becomes 

/j l E C~3,sMots=~8MsO[( 1 +8r 
OIS 

+ �89 +�89162 +(1 +8r ] 

(A.5) 
The expression of the denominator of the equation (A.3) is similar to 

(A.5). It differs only in that instead of the Mnt s there appears now the Nnt s. 
Substituting the expressions of the numerator and the denominator into 
(A.3) we get the following expression for ~/~[ ]: 

E l i  
/3 

----12[ M011 M~176176176 + M~176 M~ + M~176176176176176176 ] 
[ Non + N0oo+N0n Nool+Nou Nooo+Nolo+Nool+Non J 

(A.6) 
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In the third sum Y~v[ ], we sum over the set of pairs which are 
characterized by the quantum numbers n i = 0, l i = 1, m i = O, _+ 1, nj = O, lj = 
1 ,~ .=0 ,  ___ 1. From the relations (A.2) we can get the possible states of the 
relative motion and the motion of the center of mass. These states are the 
following: 

(i) 
(i0 

(iii) 
(iv) 
(v) 

n=O,l=O,m=O; N =  1 , L = 0 , M = 0 ;  0~=0,/L=0) 
n=l , l=O,m=O; N=O,L=O,M=O; 0 ~ = 0 , g = 0 )  
n = 0 , l =  1,m=0,___ 1; N = 0 , L =  1,M=0,___ 1; 0 ~ = 0 , g = 0 )  
n = 0 , l =  1 ,m=0,  -+ 1; N = 0 , L =  1 ,M=0,  -+ 1; ()~= 1,/t=0, _+ 1) 
n=O, l=O,m=O;  N = O , L = 2 ,  M = O , + I , + 2 ;  0 t = 2 , # = 0 ,  
_+l,_+2) 

(vi) n = O , l = 2 ,  m=O,_+l,_+2; N = O , L = O , M = O ;  ( ~ = 2 , # - 0 ,  
_+1. _+2) 

(vii) n = O , l = 2 ,  m=O,_+l; N = O , L = I , M = O , _ + I ;  0 t = 2 , / L = 0 ,  
_+ I, _+2) 

It is seen that the quantum numbers n and N are not always zero. The 
coefficients of the nondiagonal terms are not generally zero in this case 
and the sum ]~v[ ] will contain now also nondiagonal matrix elements. 
Following a procedure similar to that for the second sum the following 
expression is obtained: 

I Moos + Mo2 S + 2Mon Y. [ ] = ~, 4 M~176 + M~ + 8 
v s Noos + No2s Noos + No2s + 2Noll 

3Moo s + Mo2 s + 2 Mms + 6Mol I -- 2(~)I/2htO(~OOSII[.IIOS) 
+ 4  

3Noos + No2s + 2Nlos + 6Nool 

3M~176 + 2M~ + M I O S  - -  (23--) I/2h03(I~00S]~10S) 1 q" 12 --M011 
+ 2 3Noos + 2No2s + Nlos Noll 

. I  

+ 4 y" s(M~176 + M~ + 8 y~ s(M~176 + M~ + 2M~ 
Y~ s( Noos + No2s) Y. s( Noos + No2 s + 2Nols) 

+ 4.Y. s( 3 Moos + Mo2 s + 2Mlo s + 6 M o l s -  2( ~ ) U2hw(t~oos[t~aos ) ) 

~.s(3Noos + No2 s + 2Nlos + 6Nols) 

+ 2 + 2Mo s + Mlos-- 

Y~s(3Noos + 2No2 s + Nlos) 

( S = 0  and 1) (A.7) 
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If we substitute (A.1), (A.6), and (A.7) into (2.5) the term (AE)2 
becomes 

(AE)~ 

-- [Aoo  oos + AOlS O,S + + A,os(MIO - ] 

(S=0and 1) (A.8) 

where the quantities Ants, which depend on the normalization integrals 
N~ts, are given by the following expressions: 

2 2 12 12 
Aoos= sJVo o~,- + 2, k~kuoo- + Uoos + Noa I + ~.k(Nook + No1k) 

+ 4 4 8 
-t- + 

Noos + No2s E k( Nook + No2D Noos + No:s + 2No. 

8 12 + + 
Y~k(Nook+No2k+2No~k) 3Noos+No2s+2Nlos+6Noll  

12 6 
4 + 

Y'k(3Nook+No2k+2N1ok+6Notk) 3Noos+2No2s+Ntos 

+ 
~k(3NOO k + 2No2 k + Nl0k) 

(A.9) 

12 16 

A OlO ---- X k(NOOk + Nolk) "f X k(NOOk + No2 k + 2N01k) 

+ 24 

~,k(3NOO k + No2k + 2Nlo k + 6Nolk) 
(A.10) 

24 [ 12 
A~176176 No~---~ + ~ Nook+No1! 

16 + 
Nook + No2 k "]" 2Nol 1 

24 ] (A. 11) 
+ 3Noo k + No2 k + 2Nlok +6Nou J 

A lOS -m- 
3Noo s + NO2 S + 2Nlos +6N011 

8 t- 
~.k(3NOO k "+ No2 k -+- 2Nlo k + 6Nolk) 

+ 2 + 
3Noo s + 2No2 s + Nlos ~ k(3Noo k + 2No2 k + Nl0k ) (A. 12) 
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A 10S 
A o2s = - f -  + 

4 4 
4- 

NOO S + No2 S ~k( Nook + No2k) 

8 

Noos + No2 s + 2NoH 

8 3 + + 
~, k(Nook 4- No2 k -{- 2N01k) 3Noos + 2No2 s + Nms 

3 + (A.13) 
Y' k (3 NOO k + 2No2 k + Nlok) 

In the above expressions the index k in the sums takes the values 0 
and 1. 

Finally the quantities Q.ls which are the numerators of e.t s are given 
by the following expressions: 

Qoos-2 [ --Moos + Y'kMook b6 MOOs+M~ t-6 ~'k(Mook+gOlk) 

L (Noos)2 (y, kNook)2 (Noo S + No,,)2 [ y,k(Noo k + Nolk ) ]2 

+2 M~ M~ +2 Xk(Mook + Mo2k) 

(Woos + N o . )  2 [ZAUoo~ + So~k)] 2 

4-4 Moos + M~ + 2M~ +4 Y'k(MOOk + Mo2k + 2MOlk) 

(Noos+ No2s+2Non) 2 [Y,k(Nook + No2k + 2Nolk)] 2 

+6 

3 1/2 
3Moos + Mo2s + EM,os +6Mo11- 2(~) ho~(~poosl~los ) 

(3Noo s + No2 S + 2NIos + 6Noll) 2 

3 1/2 
+6 Zk(3M00k + MO2 k + 2Mink +6M0lk--2(i)  hW(~b00kJ~Pl0k)) 

[y~k(3Nook + No2k + 2Nlo k + 6N0,k) ]2 

+3 

3 i/2 
3Moo~ + 2Mo2~ + M,o,- (~) h~(~oo~l~lO~) 

(3NOO s + 2No2 s 4- N l o s )  2 

3 t/2 ] 

+ 3 [ ~, k (3 Noo k + 2 No2 k + N 1 Ok ) ] ~ 

(A.14) 
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Qom = 12 
2k( Mook + Molk) 

[~.k(Nook + N01k) ] 2 
+16 

Ek(Mook + Mo2 k + 2Mink ) 

[ Y~ k(Noo,~ + No2k + 2No,g) ] ~ 

3 1/2 
+ 24Y~k( 3M~ + Mo2k + 2M,ok + 6 M o , k - - 2 ( i )  ht0(*00klfflOk}) 

Mol 1 
Qoll = Qom + 24 

(No . )  2 

[ Y~ ~ (3 Noo k + No2 k + 2Nmk + 6Nmk ) ] 2 

(A.15) 

+ ~. [ 12 M~176 + M011 + 16 M~176 + M~ + 2Mini 
7 (Noo~ + N m 1) 2 (Noo k + NO2 k + 2Nol 1) 2 

3 1/2 ] 
3Moo k + Mo2 k + 2Mlo k + 6Mm1-2($) hto(qJOOkl~aok ) 

+ 24 (3Nook + No2k + 2Nlok + 6Nm 0 2 

3 1/2 
3Moo s + Mo2 s + 2M,o s + 6Mo, , - 2(~) ho~(tPoosl~P,os ) 

Qms = 8 
(3Noo s + No2 S + 2NIos + 6NolI) 2 

(A.16) 

k(3 Moo k + Mo2 k + 2M, o k + 6 Mo, k - 2(-~ )hto(q, OOkl+ 10k }) 
+8  

[y~k(3Nook + No2k + 2Nlo k + 6Nmk ) ]2 

+2  
3 1/2 

3 Moo s + 2Mo2 s + Mlo s - (~) ho~(%os I~ms 

(3Noos + 2No2 s + Nlos) 2 

+ 2Yk(  3M~176 + 2Mo2 k + M,ot-(~)hoo(qJOOklqqo,}) 

[ y,k(3N00k + 2No2 k + Nlo, ) ] 2 

Q1os Moos "~" M02S E k(Mook + M02k) 
Qo2s -- ~ + 4 + 4 

(Uoos+ No2s) 2 [~k(Uook + No2k) ] 2 

(A.17) 

+8  M~176176176 ~'k(Mook+Mo2k+2Molk) + 8 
( Noas + No2 s + 2No. )  2 [y,k(Noo * + No2k + 2No1/, ) ]z 

3 1/2 
3Moo s + 2Mo2 s + Mlos-  (-~) ho~(tPoosltPlos) 

+3  
(3Noos + 2No2 s + NlOS) 2 

3 1/2 
+3Y~k(3Mook+2Mo2k+Mlok--(~) hW(~OOkl~,Ok)) 

[]~ k(3Noo k + 2No2 k + Nlok ) ]2 
(A.18) 
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As in  the previous expressions, the index k in the sums takes the values 0 
and  1. 
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